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ABSTRACT

This thesis examines the concept of servicing and repair of satellites in low

earth orbit (LEO) using the Orbital Maneuvering Vehicle (OMV). The emphasis

is primarily focused on current polar orbiting satellites, however, it could be
economically applied to any LEO in which sufficient numbers of satellites are

located or where individual satellite cost/mission justify servicing. Significant
increases in the cost effectiveness and operational flexibility of in-space systems can

be realized when the capability to replenish consumable fluids, propellants and

Orbital Replacement Units (ORUs) are incorporated into satellite design. ORUs
can be placed in orbit using expendable launch vehicles (ELV), specifically selected

to satisfy the mission need. Several suitable small payload, low cost boosters are
now under development, with the attainment of operational status expected in the
early 1990's. The concept calls for modular satellite design and deployment of a

Space Based Support Platform (SBSP) to achieve complete effectiveness. New

technology could be applied in the form of upgrades and on-orbit modifications

much more efficiently than the abandon and replace policy which currently exists for

most satellite systems. The first four chapters provide background on the proposed

concept, OMV and ELVs. Chapter V briefly describes several polar orbiting satellite

systems providing mass summary breakdowns and current cost information. OMV

payload servicing using the Flight Telerobotic Servicer (FTS) is then discussed. A

comparison of estimated OMV satellite servicing costs versus satellite replacement

for several missions is then tabulated. Conclusions and recommendations are then

offered concerning the economic and operational benefits of concept &1
implementation. ed 0
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1. INTRODUCTION

A. GENERAL CONCEPT

The OMV is a reusable multimission spacecraft with a design lifetime of 10

years. The vehicle is built by the TRW Space and Technology group for the

National Aeronautics and Space Administration (NASA). The spacecraft is

constructed using modular design techniques to facilitate on-orbit repair and adapt

readily to future modifications. Its primary missions include space station

construction/resupply and logistics support for the Hubble space telescope. Current

plans call for OMV launch from the Space Transportation System (STS) in 1994.

This thesis examines the issues and utility of the Orbital Maneuvering Vehicle

(OMV) to conduct unmanned service and repair on satellites which are located in

low earth orbit (LEO). The emphasis will focus on current United States polar

orbiting satellites, with the potential to apply the concept to foreign and military

satellite systems. The OMV is placed in a polar orbit, where it remains in a

hibernation state until called upon to perform a mission. A small, modular storage

rack which forms the basis of the space based support platform (SBSP) can be

boosted with the OMV using the Titan IV expendable launch vehicle (ELV). [Ref.

I:Sec 3.271 The initial storage rack module provides logistic support, orbital

replacement unit (ORU) and fuel storage capacity for the OMV, with the capability

I



to be expanded as required at a later time. Periodic OMV resupply could be

achieved by Titan, Atlas, Delta or Ariane ELVs. Upon receiving a servicing/repair

mission, the OMV detaches from the SBSP and proceeds to rendezvous with the

satellite requiring service.

Contingency resupply (individual ORU) could be accomplished using smaller

ELVs such as Conestoga, Pegasus, Scout, or Delta [Ref. 2:p. 3]. The OMV would

retrieve the ORU enroute to rendezvous the satellite to be repaired. Periodic

replenishment of the OMV will be required. The frequency of replenishing will

depend on the number, duration, and complexity of assigned missions. In the

refueling, service or inspection missions, the customer is charged a fee commensurate

with the mission and program logistical requirements. A mission which requires a

contingency launch is coordinated with the OMV operations center.

A major criterion for evaluating this concept was to use primarily existing

systems and platforms. Minor modifications will be required to configure the OMV

for servicing and repair missions. Low cost ELVs and the Flight Telerobotic

Servicer (FTS) are currently in prototype stages of development, with operational

capability in the near future (2 to 4 years). [Ref. 3:p. 53] The FTS is a robotic

device that can be tele-operated under the constant command of a human operator

or run by itself under human supervision. The FTS was designed to assist astronauts

in the assembly, maintenance, servicing, and inspection of the Space Station.

2



Development of a simple fuel canister will be required to periodically refuel

the OMV [Ref. 4]. The cost to satisfy this requirement should be small, given that

an existing ELV will be used to boost the payload.

The OMV is a long life platform, ten years or greater, with the capability to

repair itself in the servicer configuration. Spare ORUs are maintained in a storage

rack within the SBSP, along with other logistical needs. Refueling is accomplished

through the use of an ELV equipped with an expendable fuel canister to mini-

mize cost. The SBSP provides thermally controlled storage for ORUs, fuel

and propellants, other consumables and storage for the FTS when not in use.

[Ref. 2:p. 3]

OMV servicing/repair mission compatibility requires modular satellite designs,

with standardized configurations to permit docking, refueling and/or replacement of

defective ORUs using the FTS. This modular design concept has been incorporated

into the OMV and Hubble Telescope. Funded by NASA, the OMV is currently

scheduled for launch in 1994 to support the Hubble Telescope mission and, later,

space station construction. [Ref. 5:p.7]

The number of countries capable of space operations has grown steadily in

recent years. As a direct consequence, the number of satellites in orbit has

increased, with France, Japan, and the European Space Agency (ESA) seriously

challenging the United States in several critical areas. The competition from ESA

has captured a 50% share of the western world's launch services market, while the

U.S. space shuttle (i.e., STS) was grounded. [Ref. 6 :p.2 81 In recent years, France

3



(Spot), Japan (MOS) and India (IRS) have placed their own earth observation

satellites in sun synchronous polar orbits with ESA (ERS) poised to follow suit in

the early 1990's, posing a further challenge. [ Ref. 7:pp. 517-530] With a large

commercial market share at stake for sensing earth resources and weather products,

foreign nations have taken the initiative to develop their own systems. In contrast,

the U.S. earth observation satellite program, Landsat, has experienced severe funding

problems over the past few years. Only recently were funds restored, maintaining

program integrity for the short term. Long term commitment questions still remain.

[Ref. 8: p.3 0 ] Additionally, the U.S. supports two major meteorological satellite

programs which provide data to a wide range of domestic, foreign, and military

users.

The Soviet Union and China are also making bids to become serious

competitors in the space market. With potentially huge commercial markets in the

balance, other countries have moved rapidly to establish expertise in space

operations. Maintaining leadership in space technology will return huge dividends

in the future.

As funds continue to tighten from budget reductions, cost reduction measures

must be found which will optimize and streamline programs without jeopardizing

leadership and innovation. Extending the life of on-orbit systems is one way of

reducing the overall cost of a program, with the possibility of conducting additional

research and development (R & D) with excess funds. As new technologies are

developed, they can be incorporated through on-orbit modification (i.e., ORU

4



upgrade) much more economically than by replacing the entire satellite. The OMV

servicer provides the flexibility for a ground station to respond rapidly to on-orbit

repair/service situations at orbit inclinations and altitudes which are currently

beyond the capability of manned operations. Manned polar space operations using

the STS, have been postponed indefinitely. [Ref. 7: p. 114]

The ability to service and repair satellites on-orbit could provide great incentive

for the commercial market to utilize standard modular design techniques, which

would ultimately result in lower unit costs through open competition.

Temporary loss of vital data and services provided by space based assets could

be minimized. At the same time, implementation would increase the capital

investment of the nation's space infrastructure with the potential to pioneer a new

industry and reassert U.S. space leadership.

B. THESIS OBJECTIVE

The intent of the study is to investigate the feasibility of servicing/repair of

satellites in polar orbit using the OMV in conjunction with various ELVs. The

current practice of abandoning and replacing satellites is extremely costly. A more

affordable and efficient use of assets may be realized by implementing a servicer

strategy to extend the life of expensive satellites and offer a cost-effective means to

upgrade or modify these assets on-orbit.

5



C. SCOPE, LIMITATIONS AND ASSUMPTIONS

For the purposes of comparison, current satellite systems are assumed to be

capable of modular design and the additional cost of modular modification is not

considered in total satellite costs. The study does not take into account the cost of

ground station operations. The OMV servicer is assumed to be controlled from a

ground station via the Tracking and Data Relay Satellite System (TDRSS).

Non-catastrophic OMV and satellite failures are assumed. The current U.S. polar

orbiting, earth observation satellite constellation is the primary group considered for

the analysis. The OMV is assumed to be launched with a single module storage rack

which serves as the basis for the SBSP. The study does not address the issues

pertaining to orbital debris which would be generated by OMV on-orbit

servicing/repair.

D. ORGANIZATION OF THE THESIS

The second chapter provides further background on the servicing concept and

implications. A survey of satellites in polar orbit is presented. The factors relevant

to satellite degradations, failures and design limitations are discussed. The issues and

relative advantages/disadvantages of modular satellite design are considered. Lastly,

components required for LEO satellite servicing are covered.

Chapter III provides a detailed view of the OMV in a servicer configuration.

The physical characteristics and subsystems are described. Performance diagrams

6



and capabilities are shown. Modifications to the preliminary NASA design for OMV

servicer mission requirements are presented.

Chapter IV provides a survey of some current ELVs. A brief description of

each with associated performance capabilities and costs are listed.

Chapter V covers current unclassified U.S. polar orbiting satellites, giving a

detailed description of the mission, mass summaries and cost related data.

Chapter VI describes the on-orbit servicing process, detailing docking, and

orbital insertion procedures. The FTS system is discussed in depth.

Chapter VII compares the cost of satellite replacement with the OMV service

concept estimated costs for several polar orbiting satellites. The advantages and

disadvantages of the servicing concept are then discussed. Conclusions and

recommendations are then offered regarding the implementation of the OMV

satellite servicing concept.

7



II. BACKGROUND

The total U.S. investment for the first three spacecraft of the Landsat program

alone approached nearly one billion dollars in 1981 [Ref. 7 :p. 532]. Since then,

Landsats 4 and 5 have been placed in orbit with Missions 6 and 7 in the

development/planning phase for mid-1990's launches. The National Oceanic and

Atmospheric Administration (NOAA) polar orbiting program maintains two

spacecraft continuously in orbit. Each satellite is designed for a two year operational

life. Over 30 satellites have been placed in orbit since the meteorological program

began in the early 1960's. [Ref. 7:p. 534] This group of satellites represents over

one billion dollars invested as of 1985 (see Figure 2.1).

The Defense Meteorological Satellite Program (DMSP) managed by the U.S.

Air Force (USAF) maintains two satellites continuously in sun synchronous polar

orbits. The latest block 5D-2 satellites have a three year operational life. Over 30

DMSP derivative satellites have been launched since the mid-1960's, representing an

estimated one billion dollars or more. [Ref. 7:p. 3241

8
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Figure 2.1 NOAA Funding by Program in FY 1985 $
(Ref. 9 :p. 91

A. CONCEPT DEFINITION

To reduce LEO space program costs and satellite degradations on-orbit, the

operational life of the satellite must be extended and the capability to effect

repair/upgrades must be established. Over the years, spacecraft costs have risen

sharply. This situation has developed due to the requirement to deliver multipurpose

satellite systems on-orbit, which drives builders to construct large, complex and

expensive satellites. This in turn increases the cost to launch these systems. As a

result, the number of satellites on-orbit and in the pipeline has decreased. Any

deviation in the planned schedule can have a major impact. This was clearly

9



illustrated in the case of the DMSP in the mid-1980's. where the U.S. was without

a satellite for approximately 1 1/2 years. [Ref. 10:p. 12] Flexibility and expanded

capability are extremely costly to achieve under these conditions, since replacement

of the spacecraft is required to correct a deficiency in most cases. The ability to

service, repair, or upgrade on-orbit would permit a high degree of program

flexibility.

In most cases, ELV expenditures constitute nearly 50% of the satellite program

hardware costs. [Ref. 10:p. 1161 Reduction of launch costs will result in significant

savings over the system life cycle. With the development of competitive relatively

inexpensive ELVs such as Pegasus, Conestoga, the Liberty series and others, low cost

access to LEO (on the order of $5 to $10 thousand/lb) will be possible with smaller

payload capacities needed for repair missions (i.e., ORUs) [Ref. 10:p. 89 and Ref.

ll:p. 14]. Using this capability in conjunction with OMV to perform satellite

servicing, a fee is charged to the customer. The fee would include prorated costs for

the OMV, propellant consumption, ground operations, OMV replenishment and

profit margin. The cost of the ELV necessary to boost a particular ORU is borne

by the customer and coordinated with the OMV operations center. The repeated

expenditure for satellite construction and launch vehicles are thus minimized.

Once the necessary support infrastructure is in place, OMVs could be boosted

as necessary to augment the existing fleet or as replacements for vehicles no longer

serviceable. Using the payload capacity of larger ELVs, OMVs could be

economically resupplied with fuel, consumables, and spare ORUs (see Figure 2.2).

10
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[Ref. 10:p. 264]

The ability to refuel on-orbit would also permit fuel versus payload trade-offs

to be examined. The initial payload capacity of the spacecraft could be increased

at the expense of a full propellant load. At a preselected point in the mission time

line, the satellite could then be serviced to its full propellant capacity. Upgrades or

other servicing could be performed concurrently.

The primary advantages of on-orbit servicing are economy through reduced

life cycle costs, flexibility, and the incentive to move towards standardized de-

sign procedures using ORUs which would result in increased system reliability.

[Ref. 12:p. 9]
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B. SATELLITES IN POLAR ORBIT

The U.S. maintains two operational weather satellite systems. The civilian

program, NOAA, uses two satellites in sun synchronous polar orbits. The U.S.

Department of Defense (DOD) maintains its own polar orbiting weather satellite

system, DMSP, using two spacecraft in sun synchronous orbit. The Landsat system

is operated by the Earth Observation Satellite (EOSAT) commercial partnership

between Hughes Aircraft Company and RCA Corporation. Two Landsat spacecraft

operate in sun synchronous polar orbit. [Ref. 7:p. 530]

Satellites in sun synchronous polar orbits cross the equator at the same local

solar time each day. This feature facilitates data analysis by maintaining the same

sun angle with respect to the ground location. Typically, two satellites are used to

maintain morning and afternoon global coverage, viewing almost all the earth's

surface twice every 24 hours, depending on altitude. Orbit inclination with respect

to the equator ranges from 95 to 100 degrees. Orbits are retrograde circular or near

circular, with altitudes varying from approximately 300 to 500 NM. Polar satellites

considered for the study have inclinations which are between 97 to 99 degrees.

France, Japan and India currently maintain polar orbiting satellites, with plans

to expand on-orbit assets. Canada and ESA are preparing to launch remote sensing

polar platforms in the early 1990's (see Figure 2.3). Additionally, NASA is working

with Japan, ESA and other nations including China to develop the first two

unmanned Earth Observing System (EOS) polar satellites scheduled for launch in

1996 and 1998. [Ref. 13:p. 46] Funding of the EOS constellation is estimated at $15

12



to $30 billion over 15 years. The complete polar EOS system would total 4

platforms, with 2 platforms to be launched by NASA, 1 by ESA and 1 by Japan to

provide frequent coverage of the entire earth. The first NASA platform is estimated

at $375 million and will carry 19 earth monitoring instruments. The platforms will

ircorporate some modularity features and would have to be replaced at 5 year

intervals, if a servicing capability is not available. [Ref. 14 :p. 48]
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Figure 2.3 Sun-Synchronous Polar Orbiting Satellites
[Ref. 2:p. 31

The commercial value of polar satellite derived products has been steadily

increasing. In 1983, the failure of a command and data handling computer in

Landsat 4 caused an estimated loss of $600,000 revenue per month. The French

Spot imaging satellite revenue from data/product sales and receiving station fees

totalled $3 million in 1986, $11 million in 1987 and $16 million in 1988. [Ref.
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7:p. 522). LEO polar satellites provide a wide spectrum of remotely sensed

information which includes: [Ref. 15:p. 41]

* Mineral Resources

• Fire Detection

" Agriculture

" Weather

• Fisheries

• Pollution Monitoring

* Search and Rescue

• Border Surveillance

• Disaster Relief

• Cartography

" Earthquake Prediction

• Oceanography

• Hydrology

• Climatic Changes

C. CAUSES OF SATELLITE DEGRADATIONS AND FAILURES

The natural environment presents many of the most severe obstacles to the

operation of a space system. The sun is the primary factor in affecting the region

of space between the earth and sun. Energy, in the form of an outward flow of
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charged particles, is constantly being radiated by the sun and is known as the solar

wind. Irregular and sudden changes in the intensity of the solar wind, lasting from

a few minutes to several hours, are known as solar flares. The frequency and

intensity of solar flares is closely related to the 11-year sunspot cycle. (see Figure

2.4) Solar energy directly influences the spacecraft through atmospheric heating,

which increases the drag. The operational life of a satellite refers to the amount of

time that the spacecraft performs its designed mission, while the orbital life refers

to the time the vehicle will remain in orbit with no station keeping maneuvers to

maintain orbit altitude.

200J

Sunspot Number 100-

0

10 10

Protons(E>30 MeV)cm 2 10 9

10
6

1955 1965 1975

Figure 2.4 Solar Activity and Flare Proton Fluence
[Ref. 16:p. 641
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Although the atmospheric density at orbital altitudes is in most cases

small, the lifetimes of LEO satellites are significantly affected by atmospheric drag

[Ref. 17:p. 35]. A satellite in low earth orbit with no compensation for drag effects

will constantly lose energy and altitude, ultimately reentering the earth's atmosphere.

The orbital life of a satellite is a function of its altitude and ballistic coefficient. The

ballistic coefficient depends on three factors: the spacecraft weight (W), frontal area

(A) and drag coefficient (see Figure 2.5).
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Figure 2.5 Satellite Lifetime as Function of Altitude
[Ref. 17:p. 39]
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The 1 1-year solar cycle impacts orbital lifespans by changing atmospheric

densities. Solar activity increases the effective density of the atmosphere through

atmospheric heating, which effectively raises heavier gaseous components to higher

altitudes creating increased drag on the spacecraft. To compensate for the drag

effects, periodic expenditure of propellant is required to maintain satellite orbit

altitude. In periods of heightened solar activity, larger amounts of propellant are

required to offset increased drag. When the supply is exhausted, the satellite orbit

begins to decay. Consequently, operational life is also a function of the launch date

with respect to the 11-year solar cycle.

Solar cell damage and efficiency varies with altitude as shown in Figure 2.6.

The primary gaseous components in the LEO region from 200 NM to 1200 NM are

atomic helium and the much heavier atomic oxygen, with the helium layer above

atomic oxygen beginning about 500 NM. Atomic oxygen collisions with a space

vehicle are almost completely inelastic. [Ref. 16:p. 69] Typical collisions occur

at relative orbital speeds of about 7700 m/sec. The highly reactive nature of oxygen,

when combined with the extremely high impact velocities, causes material erosion

on the spacecraft. Impingement of high energy solar radiation and atmospheric

particles on spacecraft solar panels causes power output reductions over time. [Ref.

18:p. 1521 The major types of radiation damage to solar cells are ionization and

atomic displacement. Both the voltage and current output are affected. Increased

activity as a result of the 11-year solar cycle causes additional damage.
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|Ref. 18:p. 1531

Limited battery lifetimes have also impacted spacecraft mission capability.

Because sun synchronous polar orbiting satellites spend approximately 35% of their

orbit in eclipse conditions, battery performance for continuous operations is

essential (i.e., remote sensing on earth's night side). Battery operations must be

closely monitored to avoid exceeding the specified battery depth of discharge,

limiting operations in eclipse conditions. Battery cell temperatures must also be

maintained within a fairly narrow range to maximize cycle life. The development

of high performance nickel-hydrogen (Ni-H 2 ) batteries have nearly doubled the

cycle life of the widely used nickel-cadmium (Ni-Cd) battery, while adding a

greater degree of complexity and cost. [Ref. 19:p. 11 The high energy capacity of
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silver-zinc (Ag-Zn) batteries is offset by relatively low cycle life (20-200) capability.

[Ref. 20 :p. 3501 The nominal cycle life of a Ni-Cd battery is shown in Figure 2.7.
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Figure 2.7 NI-CD Battery Cycle Life
[Ref. 20:p. 354]

Spacecraft data recorders, used for storing remote sensing information when

the satellite is not in view of an earth receiving station, have been the cause of

several recent mission degradations. [Ref. 21:p. 40] Although the number of

receiving stations worldwide has grown, there are still not enough stations at key

points around the globe to ensure continuous signal reception. Failure of the

recording system precludes collection of important data which is outside the

reception range of a ground station. Landsats 4 and 5 were designed to link data

continuously via the TDRSS system, eliminating the need for data recorders.
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However, due to operational problems with the TDRSS data link, Landsats 6 and

7 will again incorporate data recorders for on-board image storing.

Satellite remote sensing instruments have caused a number of missions to

operate under less than full capability. Loss of a sensor often necessitates the

procurement of the information from alternate sources, or in the extreme case,

complete loss of vital data with mission replacement as the only solution. Table 2.1

summarizes the causes of mission degradation or failure for several polar satellites.

[Ref. 7:pp. 523-537]

TABLE 2.1

SELECTED POLAR SATELLITE DEGRADATION/FAILURE CAUSES

SATELLITE BATTEMY DATA SUSOR ATTITUDE SOl POM CVKRCATIOU

MUME COT RY SYSTU SYSTE[

DISP 2 X

SPOT 1 X

LANDSAT I X X

AIIDSAT 3 X

LADSAT 4 X X X

LADSAT 5 X

VOAA6 _

NOAA8 X

SEASAT I
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D. MODULAR SATELLITE DESIGNS

It is generally accepted that the easiest and most efficient on-orbit servicing

requires modularization of a spacecraft into a number of easily exchanged ORUs

(see Figure 2.8) [Ref. 22:p. 37].

ORU Frame on

Firnizr,

EVA Handholds

Figure 2.8 Orbital Replacement Unit
[Ref. 23:p. 1)

The fewer the ORUs, the easier on-orbit servicing becomes. The ease of on-

orbit servicing must be balanced against the potential cost of replacing an ORU

containing both failed and functional systems. The ORUs must be designed for easy

insertion and removal using the FI'S. Considerations here include alignment aids,

interface verification and connection designs for power, thermal, fluid and

communication services between the ORU and satellite core. tRef. 22:p. 37]

21



Modular design of spacecraft to facilitate on-orbit servicing will increase design

and development costs by an estimated 4%, with an estimated 8% per unit recurring

cost increase for hardware according to a Martin Marietta study completed for

NASA [Ref. 22:p. 38]. A serviceable design may also result in a heavier spacecraft,

with a 5 to 10% weight increase per satellite estimated by many builders. Balanced

against these increases would be the ability to replenish expendables, upgrade

instrument packages and replace defective ORUs holding the downtime of a

valuable satellite asset to a minimum. Individual ORU mass and cost would depend

on the degree of satellite modularity and complexity.

The development of flexible, efficient solar arrays could permit degraded

arrays to be replaced. One possibility is the use of flexible rollout type arrays

stowed on a cylindrical drum. The concept was tested successfully in an experiment

aboard an AGENA spacecraft in 1971 (Figure 2.9) [Ref. 20:p. 346]. The USAF has

been funding research using gallium-arsenide cells which promise to be significantly

more efficient (21.5% compared to 14.5% for silicon solar cells) [Ref. 24:p. 31].

Using the more efficient solar cells would permit the same power load to be

provided using smaller, lower weight solar arrays. A flexible design feature would

allow replacement arrays to be boosted using low cost ELVs in a folded

configuration. Extension could be accomplished after attachment to the satellite by

the FTS unit.

22



r gure 2.9 Flexible Rollout Solar Arrays
[Ref. 20:p. 345]

E. INSURANCE COSTS

Space insurance costs amount to a sizeable portion of total mission

expenditures. Current satellite insurance policies require the customer to pay the

insurer a specified amount for the total or partial loss of a satellite. Insurance which

covers launch pad property, equipment and personnel also amounts to nearly $100

million for Titan, Delta or Atlas launches. [Ref. 25:p. 69] In the wake of the

February 1990 Ariane failure, launch insurance rates are expected to increase to 20%

or more of the spacecraft value [Ref. 26:p. 21]. Consequently, using low cost ELVs

in conjunction with ORUs, which will in most cases amount to a fraction of the

spacecraft cost, should significantly lower the amount of insurance required for
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launch and payload coverage. Insurance for the servicing/repair portion of the

mission would still be needed.

An OMV servicing capability would permit insurance rates to be negotiated

and specifically tailored to the insured's requirement. With an on-orbit servicing

option, total and partial loss probabilities should decrease, resulting in lower overall

insurance premiums.

It should be noted that the insurance issue does not impact U.S. government

spacecraft, since all government payloads are self-insured. The potential loss to the

government would be reduced if the spacecraft were serviceable in the event of

failure. [Ref. 22 :p. 501

F. MANNED SERVICING OPERATIONS IN POLAR REGIONS

The Palapa and Westar satellite retrievals and on-orbit repair of Syncom IV-3

demonstrated that manned servicing operations using the STS was possible, with

flights originating from the Eastern Test Range (ETR) at the Kennedy Space Center

(KSC). Currently, STS operations are limited to orbit inclinations below 57 degrees

for launches from the ETR, eliminating polar operations. STS launches from the

Western Test Range (WTR) at Vandenberg Air Force Base can achieve polar orbit,

however, shuttle facilities at the WTR have been placed in caretaker status for an

indeterminate period of time. Reactivation would require time and serious

consideration to the large funding requirement necessary to ready the WTR for STS

operations.
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Assuming that manned polar space activity were possible, the shuttle is

restricted to approximately 300 NM in altitude with a standard loadout (see Figure

2.10), thus limiting the servicing mission to satellites below this altitude.
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Figure 2.10 Shuttle Performance
[Ref. 16:p. 33/

Further, manned space operations significantly increase associated costs

with respect of unmanned space flight. This is due to the hazardous environment

in space, and the requirement to enclose man in an artificial environment. [Ref.

27:p. 401 Extravehicular activity (EVA) had been considered to repair and service

Landsat 4 in 1984. It was calculated that a 5 to 6 hour EVA would be required to

perform the mission, which included dangerous fluid transfers with man in the loop.

Leakage or venting of a corrosive fluid onto the spacesuit pose serious risks to

astronauts. Preparations for EVA missions include lengthy prebreathe and cabin

pressure decrease periods to reduce nitrogen in the bloodstream, preventing nitrogen
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narcosis (i.e., the bends) when in the lower pressure spacesuits. [Ref. 28:pp. 44-53]

Two person teams are usually required in the interest of safety.

Spacecraft in polar orbit spend about one-third of their time above 60 degrees

latitude, and thus are exposed to greater radiation hazards [Ref. 16:p. 641.

Radiation hazards associated with polar orbits normally consist of trapped high

energy protons, galactic cosmic rays, and the effects of the South Atlantic anomaly.

High energy protons are the primary hazard to crews. The earth's magnetic field

deflects nearly all solar particles in the region of low orbit altitude (150 NM - 300

NM), and low inclination (less than 60 degrees latitude) back into space. In polar

regions, solar flare activity can have extremely serious consequences on manned

operations. The sudden release of energy stored in the sun's magnetic field can

accelerate charged particles to very high energies. Flare events are random and

cannot accurately be predicted. Above 60 degrees earth latitude, the flare particles

can stream all the way down to the atmosphere along the earth's magnetic field lines

(see Figure 2.11).

Current spacesuit shielding does not provide adequate protection for large flare

events. The occurrence of a solar flare would require immediate termination of an

EVA and retreat to a safe haven aboard the STS. It is estimated that astronauts

would have approximately 20 to 30 minutes to reach a protected location aboard the

shuttle using the STS solar flare alarm system prior to the arrival of high energy
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Figure 2.11 Solar Flare Particles Interaction
with Earth

[Ref. 16 :p. 631

flare particles. (Ref. 29:p. 2981 Manned polar operations clearly dictate that

extensive precautions must be implemented to guarantee crew safety, whereas OMV

satellite servicing eliminates the requirement for expensive man rated systems.

G. REQUIRED COMPONENTS FOR LEO SATELLITE
SERVICING/REPAIR

Systems and subsystems necessary to perform on-orbit servicing and

maintenance include: [Ref. 2:p. 2]

• OMV with Payload Kit

° Space Based Support Platform

* Ground Based Mission Control Center
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• Expendable Launch Vehicles

* Flight Telerobotic Servicer

" On-Orbit Consumable Resupply Systems (i.e., ORUs, propellants, cryogenics,
etc)

Implementation of an unmanned OMV servicing concept can be accomplished

using several strategies. For the purposes of this study, a single OMV equipped with

a FTS and storage rack is assumed to be available for multiple polar satellite

servicing (Figure 2.12). Chapters 11 through VI outline the OMV, FTS, ELV, and

satellite components of the servicing concept in more detail.
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OMVVISERVICER CATCHUP ORBIT
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A - SPACE -ASES

RESUPPLYY O~ .

Figure 2.12 OMV Satellite Servicing
[Ref. 30:p. 191
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IlL. ORBITAL MANEUVERING VEHICLE

This chapter briefly outlines the NASA OMV design missions, provides a

detailed description of the current OMV and required modifications for vehicle

conversion to a servicer configuration.

A. MISSION

The OMV is a versatile, reusable, multimission, remotely operable vehicle with

a design lifetime of 10 years over the course of 40 launches/landings aboard the STS

[Ref. 31 :p. 121. The spacecraft prime contractor is the TRW Space and Technology

group, supported by 37 subcontractors. Built for NASA, its primary missions include:

[Ref. 32:p. 1]

* Spacecraft retrieval, reboost, deboost or viewing

• Spacecraft on-orbit servicing including refueling and component replacement

* Space station construction and logistics support

* Large observatory service (i.e., Hubble Telescope) from either space station or
shuttle

* Experiment carrier for subsatellite missions

The OMV is currently adapted for launch aboard the space shuttle, however,

a preliminary analysis was conducted to determine required OMV launch interfaces

29



for Titan IV ELV compatibility. It was found that minor mechanical integration and

ground/flight operation procedural changes will be required to adapt the OMV for

Titan IV launch. [Ref. 1:Sec. 3.1] Additionally, the OMV would not require the use

of an upper stage to reach the desired LEO altitude.

NASA plans call for the OMV to be placed in orbit by the space shuttle, and

deployed using the remote manipulator arm. The OMV remains in space until

refurbishment is required, where it is returned to earth by the STS orbiter.

Permanent space basing at polar inclinations, where the STS is not expected to

operate, is the most demanding scenario for the OMV, requiring repeated resupply

by ELV. [Ref. 33:p. 9] By combining the technologies of space robotics (FTS) and

on-orbit transfer of fluids with the mobility of the OMV, an unmanned resupply and

servicing capability can be established.

The OMV's modular design enables self-servicing (with FTS) in nearly all

situations, with the exception of catastrophic failures. The system incorporates a

high degree of component redundancy such that no single failure will result in loss

of the OMV mission. To conserve fuel and electrical power, the OMV can be

placed in a hibernation state for up to 9 months. [Ref. 5:p. 24] This feature greatly

enhances its utility and adds very little cost to the initial design by using existing

technology. The spacecraft remains in a low power consumption state until receiving

ground control activation commands when required to perform a mission. The

hibernation mode calls for the OMV to be pointed at the sun for maximum solar cell

output and minimum battery drain, and spin-stabilized to conserve fuel.
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The first OMV is scheduled to be launched in 1994 to reboost the Hubble

Space Telescope which had a launch date in April 1990. Other near-term missions

include space station support, satellite retrieval, orbital debris collection, and

spacecraft orbital transfers to orbits beyond the reach of the STS. Future

possibilities include the capability to reach geosynchronous orbit to perform satellite

servicing and return using an orbital transfer vehicle (OTV).

B. PHYSICAL CHARACTERISTICS

The OMV has a 15 foot diameter and is 56 inches in length, having been

designed to occupy minimum space in the STS. Using the 15 foot dynamic payload

envelope of the Titan IV ELV, polar insertion can be accomplished from the WTR.

The OMV spacecraft incorporates a fully modular configuration that allows on-orbit

replenishment of consumables and propellants, as well as replacement or upgrade

of ORUs. The ORUs use a single-bolt attachment that permits change out by

astronaut EVA or by the F1'S. The design offers a high degree of reliability and

maintainability. [Ref. 34:p. 8]

A fully loaded OMV in the NASA configuration weighs 19,900 pounds,

including 9,000 pounds of usable bipropellant (monomethyl hydrazine/nitrogen

tetroxide) for the variable-thrust orbit-adjustment engines, 1,180 pounds of usable

monopropellant (hydrazine) for the Reaction Control System (RCS), and 165 pounds

of usable nitrogen for the cold gas RCS. The cold gas system can be used for close

proximity operations to reduce spacecraft contamination during final approach and
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docking maneuvers. [Ref. 32:p. 9] The OMV is composed of two separate modules;

the Short Range Vehicle (SRV) which includes the RCS and avionics equipment and

the bipropellant Propulsion Module (PM) (see Figure 3.1).
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Figure 3.10OMV Configuration Propulsion Module Side
[Ref. 30:p. 51

1. Short Range Vehicle

The SRV is modular, containing 11 avionics and 4 RCS ORUs. All

avionics and RCS subsystem ORUs mount on the SRV periphery (see Figure 3.2).

Guide pins provide the positioning accuracies necessary for proper alignment and

ORU insertion/removal.
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Figure 3.2 OMV Configuration Payload Side
[Ref. 34:p. 9]

The SRV is designed to perform as a stand alone system in support of

space station assembly and space shuttle missions with small mass payloads and low

maneuvering requirements. The SRV~s propulsion system is independent of the

propulsion module. The SRV uses 4 RCS modules, which consist of 28

monopropellant (hydrazine) thrusters rated at 12 lb-force each and 24 cold gas

thrusters (rated at 5 lb-force each) uniformly spaced around the vehicle. [Ref.

3 1: p. 151
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2. Propulsion Module

The four main engines and bipropellant are contained in the replaceable

PM. The entire PM is an ORU which permits on-orbit bipropellant resupply through

module change out [Ref. 3 2 :p. 9]. There are no fluid interfaces between the PM and

SRV. Plug type fittings are used to connect electrical power and command data

links. Once depleted, the PM is returned to earth for refurbishment and reuse via

the shuttle. Successful replacement of a fully loaded PM has been demonstrated

using the space shuttle's remote manipulator arm and by astronaut EVA at the

Marshall Space Flight Center. [Ref. 5:p. 161

The PM's four variable thrust engines (13 to 130 lb-force) provide

approximately 90 percent of the total impulse capability of the OMV. The wide

range of thrust available is required to ensure that sensitive payloads can be

transported without causing damage. Accelerating forces of not more than .002 g are

needed for Hubble Telescope servicing missions and operations in which large solar

arrays or delicate instruments are involved. [Ref. 5 :p. 121

The PM is used where large orbit altitude/plane changes are needed, or

movement of large payloads is necessary. The OMV has the capability to complete

plane changes of up to 6.5 degrees or approximately 1,000 NM altitude changes (see

Figure 3.3).
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Figure 3.3 OMV Payload Deployment Performance
[Ref. 34:p. 161

ONIV altitude change performance is a function of payload mass (see

Figure 3.4). Some specific examples include: [Ref. 5:p. 71

" Capability to retrieve space telescope (25.00) pounds) at 130) NM above base
(120 NM) for servicing and redeploy to 130 NM above base then return.

* Deliver a 3,500 pound payload to 340 NM above base, deploy and return with
a I degree plane change each way.

* Transfer 50,000 pound logistic module from 160 NM base and deliver to space
station at 270 NM, then return to base.
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C. THERMAL CONTROL

The thermal control subsystem operates using a completely passive design.

Multi-layered insulation blankets cover all non-radiative surfaces and propellant

tanks. Thermostatic heaters are provided on propulsion components and critical

avionics for under-temperature protection. All avionics ORUs use

variable-conductance heat pipes coupled to radiator surfaces. [Ref. 5:p. 20] Each

ORU is thermally insulated to facilitate on-orbit ORU changeout.
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D. POWER

The OMV uses batteries to provide primary electrical power, with solar cells

as the secondary source. The requirement for this arrangement is driven by the fact

that the original design specifies short duration, high power consumption missions.

Since the OMV is maneuvering, it cannot always maintain the correct sun angle for

solar array use. Further, any payloads must be powered and maintained in the

correct attitude orientation regardless of OMV orientation. [Ref. 5:p. 21] The

current OMV design consists of 6 rechargeable 220 ampere-hour Ag-Zn batteries,

that can provide sufficient power for an envisioned 7-day maximum mission.

Recharging is accomplished by reorienting the OMV solar array (mounted aft on

SRV) towards the sun. Solar array power can be used to supplement battery power

on some missions. The solar array design end-of-life (EOL) output capacity is 500

watts [Ref. 31:p. 21].

E. GROUND CONTROL

The primary control of the OMV is accomplished from a ground station using

the two-way TDRSS data link. Communication is accomplished using S-band

channels which are fully redundant, and can handle high digital data rate (1 megabit

per second) transmissions required for pilot-mode video and target viewing. The

OMV conducts autonomous docking up to the final approach point ( at 1000 ft),

where the ground based pilot assumes manual control. Provisions for placement of

a control console aboard the space shuttle have also been examined. [Ref. 31:p. 21]
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The Ground Control Console (GCC) equipment provides for near real-time

pilot control functions, and routine spacecraft monitoring and control. [Ref. 5:p. 19]

Two GCCs are arranged side by side to proide close pilot-copilot interaction. The

console receives and formats OMV telemetry data for display to the pilot and up

links command signals.

The GCC provides video, text and graphic display for all telemetry data.

During the final approach and docking maneuvers, the pilot controls the OMV by

using a series of controls which are similar to those found in aircraft. A three

second command signal time delay exists as a direct result of using the TDRSS data

link. The majority of the time delay is a function of data formatting requirements,

rather than link delay. It has been determined by simulation and full scale model

testing that pilots can compensate for the three second delay with the proper

training. The system has been successfully evaluated on both cooperative and

non-cooperative (tumbling) satellites. The NASA GCC will be located at the

Johnson Space Center. [Ref. 5:p. 13]

F. NAVIGATION AND DOCKING

Navigation and spacecraft attitude information are provided by the Global

Positioning System (GPS), a rendezvous radar set, an inertial measurement unit

(IMU) and a set of sun and earth sensors. These systems are used to permit

autonomous docking to a range of 1,000 feet from the target spacecraft with an
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onboard computer. [Ref. 33:p. 2] Two modes of guidance are provided, orbit

change and auto-rendezvous.

The OMV can attach to payloads and other spacecraft using one of two

methods. The Remote Grapple Docking Mechanism (RDGM) provides the

complete functional capability to capture and release on-orbit, by remote command,

a payload containing a NASA standard grapple fixture. The RDGM also contains

electrical power and data interfaces between the payload/satellite and OMV to

enable alternate control through OMV GCC. [Ref. 35:p. V1P1-31]

The second attaching method uses a Three Point Docking Mechanism (TPDM)

to mate the OMV with a payload/satellite. The system provides a structural and

electrical interface between the OMV and the satellite/payload fitted with a flight

support system docking interface. [Ref. 34:p. 261 The TPDM adaptor has three

latches mounted on a ring at 120 degree intervals to secure the payload. The TPDM

provides the complete functional capability for capture and release on-orbit by

remote command. Both methods use a system of 2 video television cameras, lights

for night operations and on-board electronics to allow the pilot to control OMV

docking from the GCC.

G. MODIFICATIONS FOR ORBITAL SERVICING MISSION

The OMV in the NASA configuration is primarily a battery powered, short

mission duration vehicle which is designed to be serviced at the space station, shuttle,

or on the ground [Ref. 1:Sec. 3.31. In order to perform extended duration (10 years
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or more), polar satellite servicing, a number of modifications are required.

Conversion of the OMV from a battery powered to solar powered veic!- ,ih the

addition of a front end "kit" (FTS and Storage Rack) appears to offer the most

flexible and cost effective solution. The alternative calls fcr OMV battery

replacement at nine-month intervals using ELVs, with the possibility of extended

battery charging periods. For the purposes of the study, the solar powered vehicle

with a servicing kit will be examined.

Specific subsystems requiring modification are the electrical power, including

solar array and batteries, thermal control, radiation protection and the addition of

an integral front end kit consisting of a storage rack and FTS.

1. Power

The OMV in a servicer configuration requires an average 750 watts (W)

for OMV operation, 450 W for the FTS and 800 W for battery recharge, totalling

2,000 W of power required. [Ref. 33:p. 311 The current NASA OMV with Ag-Zn

batteries and solar array which provides battery charging is insufficient to meet the

demands for remote satellite servicing. By converting the primary OMV bus power

source to solar energy with batteries providing auxilliary power higher degrees of

flexibility are available for extended duration servicing missions. Battery usage

becomes necessary only during eclipse and non-sun oriented operations. The high

energy Ag-Zn 7 kilowatt-hour (Kw-hr) batteries (one, plus one redundant spare) can

require up to a six-week charging period with the current solar array. Replacement
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due to the relatively low cycle life would be necessary after nine months by ELV

resupply. By changing to long life, faster charging Ni-Cd or Ni-H2 battery types,

extended duration (10 years or more) lives are possible. Although initially more

expensive, long term cost savings result from decreased replacement and ELV

resupply requirements.

The Ni-H2 battery is lighter and can operate at a higher depth of discharge

than comparable Ni-Cd batteries. Using an existing flight qualified, 1.6 Kw-hr Ni-Cd

or 2.2 Kw-hr Ni-H2 battery results in a requirement for six Ni-Cd or three Ni-H2

batteries respectively including one redundant spare for each type. [Ref. 33:p. 32]

Both types can be encased as modular ORUs for OMV compatibility. The high

number of cycles required for the servicing mission (over 58,000 per 10 years) limits

the depth of discharging for both battery types. Ground testing of Ni-H, battery has

demonstrated a capability of over 40,000 cycles in ground testing, whereas flight

experience with the Ni-Cd battery is more extensive. Allowable depth of discharge

is 25% and 40% for the Ni-Cd and Ni-H2 battery types respectively. Battery

characteristics are summarized in Table 3.1. [Ref. 33:p. 105] The Ni-H2 battery

offers long-term cost and weight savings over the Ni-Cd arrangement.

The current OMV solar array can provide only 650 W of power, which is

used primarily for battery charging. The add-on solar array size is based on the

average power demands of the OMV and FMS. The solar array, mounted on the
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TABLE 3.1

OMV BATTERY OPTIONS

Ni-Cd Ni-H 2  Ag-Zn

Capacity 1.4 2.2 7.0
(Kw-Hr)

Allowable Depth 25% 40% 80%
of Discharge

Number 6 3 2

Total Weight (lb) 536 342 290

Number of - 20,000 -40,000 - 20-200
Cycles

SRV, is 37 square feet (sq ft) in area. The solar array required for an OMV servicer

using silicon cells is 200 sq ft. [Ref. 33:p. 34] This can be accommodated by adding

deployable paddles or fold-out wings to the present design (see Figure 3.5). Using

higher efficiency gallium arsenide (Ga-As) solar cells requires approximately a 167

sq ft array area. Solar array end-of-life output is 2 KW [Ref. 33:p. 105]. Solar array

characteristics are summarized in Table 3.2. [Ref. 33:p. 106]
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Figure 3.5 OMV Solar Array Configuration
[Ref. 1:Sec. 3.31

TABLE 3.2

OMY SOLAR ARRAY OPTIONS

SILICON Ga-As

Area (sq ft) 200 167

Weight (Ibs) 230 221
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2. Thermal

Degradation of thermal surfaces in LEO polar orbits is significantly

greater than in the lower inclination orbits (60 degrees or less). The propulsion

module aft-face and thermal surfaces on the ORUs must be able to survive an

acceptable amount of on-orbit degradation over a 10 year period. The baseline

NASA OMV has the capability to last three years in low inclination orbits using

silver-teflon tape. Beyond this point the thermal operating range will degrade,

ultimately leading to component failure. To extend thermal protection to

components over the 10 year period, silver-quartz second surfacing mirroring is used.

[Ref. l:Sec. 3.9]

3. Radiation Shielding

Extended duration OMV polar servicing missions necessitate increased

radiation protection over the baseline NASA vehicle. The long term (10 year)

exposure to high energy protons, cosmic rays and effects of the 11-year solar cycle

will exceed the 10,000 rad total dose design limit. The original NASA design

projected low inclination, 6 to 10 day missions between 160 NM to 300 NM.

Additionally, any missions which reach approximately 1200 NM in polar orbit enter

the inner Van Allen radiation belt (peak radiation flux is at 1800 NM). [Ref. 1:Sec.

3.9] Operations within this region may require additional shielding to extend vehicle

life to 10 years or more. Using the TRW total radiation dose model, additional

shielding material required for a 10 year, natural environment, Geosynchronous
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Earth Orbit (GEO) would add 367 lbs to the OMV weight. [Ref. l:Sec. 3.91 An

extended duration LEO polar orbiting vehicle shielding requirement can be

approximated by using the GEO shielding figure as a first estimate. The actual polar

shielding requirement will be less than that of the highly saturated radiation

environment found at GEO altitudes. [Ref. 29:p. 141

4. Propulsion

Using the NASA version OMV, the bipropellant propulsion module, RCS

hydrazine (N2H,) tank ORUs and gaseous nitrogen (N,) ORUs are designed for

shuttle on-orbit or earth based replacement. Using bi-directional fluid flow

couplings, consisting of interconnects, control valves and command telemetry

avionics, the OMV is provided with an interface to receive propellant/fluid resupply

via ELV and to transfer fluids/propellants to a user spacecraft. [Ref. 33:p. 61] The

fluid couplings necessary to mate with the user satellite are added to the baseline

OMV remote grapple docking mechanism. (see Figure 3.6) For a servicer OMV

equipped with a s age rack and FTS, a manifold is used to route the fluid transfer

kit to the front face docking post.

Use a of bi-directional fluid transfer kit eliminates the requirement for

costly propulsion module replacement and ORU changeout. Resupply fluid and

propellant canisters are used to replenish the OMV servicer tanks.
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Figure 3.6 User Spacecraft Fluid Coupler Mechanism
(Ref. 33:p. 721

5. Storage Rack

The rack module serves as the OMV's logistics storage center for ORUs,

propellant and other consumables. Additional modules could be boosted during

opportunity or dedicated launches. Expansion to a fully functional SBSP would

require the platform to have its own power, thermal and stabilization systems to

maintain SBSP attitude and temperature control when detached from the OMV.

[Ref. 4] With a SBSP, a single or multiple OMVs can be furnished with spare

propellant, ORUs and other necessary consumables. The SBSP is placed at an

altitude which minimizes round trip OMV servicer travel distance. The decision to

fund the development of an operational SBSP would depend on the number of

satellites and/or platforms which are available for servicing. For the polar orbiting
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constellation, the number of satellites may appear to be low, however, a SBSP

permits ready access to all assets for preplanned product improvements (Pl) and

other modifications to particular satellite subsystems. [Ref. 36:p. 11] Cost savings

would result from the ability to use larger ELVs for ORU resupply, which reduces

the on-orbit cost per payload pound, and permits large scale replenishment transfers

to a SBSP. Storage rack weight is estimated to be 1,193 pounds. [Ref. 30:p. 107]

6. Flight Telerobotic Servicer

In June 1989, Martin Marietta became the phase C/D prime contractor

to build a FTS system for use by NASA in assembling the U.S./international space

station [Ref. 3:p. 53]. The FTS attaches to the storage rack, forming the front end

servicer kit for the OMV (see Figure 3.7).

The primary purposes of the ETS are ORU change out and fluid line

connection/disconnection. These manipulation tasks do not require much dexterity

and could be performed by single or double arm manipulation. For example, the

change out of ORUs of the type used in the OMV design requires the use of a

universal servicing tool (UST). For ORU removal the tool loosens a single

attachment bolt and subsequently removes the unit after locking on an H-shaped

bracket. [Ref. 33:p. 37] For the purposes of this study, the dual arm FTS system is

assumed.
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Figure 3.7 OMV Servicer Kit
(Ref. 3 0:p. 311

The FTS has two manipulators, each with seven degrees of freedom

(DOF). It also has one five-DOF attachment stabilization and positioning system

mounted on a compact body. Other equipment mounted on the body includes two

Ku-band antennas, a camera positioning assembly with two video cameras and

holsters for storing tools.

The manipulators are teleoperated and controlled in seven DOF.

Although six DOF are adequate to perform all tasks in free space, the seventh

permits the FTS to reach around obstacles and avoid contact with the worksite (see

Figure 3.8). [Ref. 3 7 :p. 15) Main arm reach is 14.5 feet. Two cameras are mounted
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at the "head" of the telerobot for general task viewing, and a camera is mounted at

each wrist for close-up viewing.

Telerobot safety is a major design consideration. The FS is two-failure

tolerant to preclude collision with the host satellite or space station. The software

looks at the manipulator's position, and compares it with the boundaries established

for the manipulator. (Ref. 37:p. 181 If the boundaries are exceeded, the

manipulator is automatically de-energized and an alert is sent to the operator. The

FTS system mounted on the OMV is subject to the three-second feedback time delay

resulting from the TDRSS control link. Further, OMV command bit rates are
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limited to one kilo bit per second (kbps), which is far below the 400 kbps

requirement needed for full human feedback control operation. Direct control from

the GCC is thus limited to extremely low frequencies, comparable to the very slow

command sequences used when controlling the OMV docking approach to a target

satellite. [Ref. 33:p. 461 To prevent control instabilities due to the large signal

feedback time delays when operating under manual control, the FTS is programmed

to perform manipulator tasks autonomously under human visual supervision using

the video camera system. Manual override becomes necessary only when a

malfunction or manipulator boundary alert occurs. [Ref. 4]

The FTS will have the capability to operate indefinitely in the thermal

environments encountered in low earth orbit [Ref. 37:p. 18). FTS weight and power

requirements based on a recent NASA study are approximately 575 lbs and 450 W

respectively [Ref. 33:p. 106].

7. Summary

The OMV servicer kit (i.e., solar arrays, Ni-H2 batteries, storage rack,

FL'S) including fluid transfer system and contingency margin totals 4,110 pounds.

(see Figure 3.9) The total launch weight of the servicer kit, including 3,000 pounds

of usable hydrazine and 3,200 pounds allocated for ORUs is 10,749 pounds. [Ref.

33:p. 1061 Adding 327 lbs for radiation shielding, the total OMV servicer

configuration launch weight is 30,976 lbs.
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IV. EXPENDABLE LAUNCH VEHICLES

This chapter provides a brief survey of selected ELVs that would be used in

support of OMV satellite servicing. Other competing ELVs with similar capabilities

can be used as well.

A. TITAN IV

1. Description

The Titan IV ELV is manufactured by Martin Marietta Astronautics

Group and was designed to duplicate space shuttle payload capabilities [Ref. 38:p.

151. The launch vehicle is an improved version of the highly successful Titan II.

The Titan IV launch vehicle consists of a two-stage liquid propellant core with two

strap-on solid rocket motors (see Figure 4.1). [Ref. 39:p. 1411 It is capable of single

or dual payload missions to LEO. Payload fairings (with no upper stage) are 66 feet

long and 15 feet in diameter. [Ref. l:Sec. 3.11

It will be able to place 32,160 pounds into a circular 100 NM polar orbit

from Vandenberg AFB. The Hercules Corporation is currently developing solid

rocket motor upgrades for Titan IV which, when placed into service, will boost polar

payload capacity to 41,400 pounds. Western test range Titan IV launch capability
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Figure 4.1 Titan IV (No Upper Stage) with OMV Payload
[Ref. l:Sec. 3.1]

is expected to be available in 1990 from complex 4E [Ref. 40:pp. 32-341. The USAF

has issued a request for proposals (RFP) for the initial work to modify one

additional WITR launch pad (complex 6) for Titan IV compatibility, which was

previously developed as a space shuttle facility. The option to pursue the

development of a new Titan IV pad (complex 7) at the WTR is also being

considered should complex 6 conversion prove to be unfeasible. [Ref. 4 1:p. 131

The converted intercontinental ballistic missile, Titan I1, can boost a 3000

lb paylodd into a 100 NM polar orbit. Using existing strap on motors, this capacity
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can be increased to 7,000 lbs. Titan I1 launch facilities are currently available at

Vandenberg AFB (complex 4W). Approximately 55 Titan II launchers still remain

in the inventory. [Ref.7:p. 3801

2. Servicing Mission

The Titan IV is used to boost the OMV servicer, spare ORUs, SBSP

modules and provide OMV logistic replenishment. Titan II will be used to launch

future Landsat spacecraft.

3. Cost

The cost for each Titan IV launch is calculated to be $105.5 million, not

including the payload [Ref.40:p. 33]. Titan II launch costs are approximately $24.6

million [Ref. 7:p. 379]. Launch cost estimates do not include upperstage or insurance

costs.

B. ATLAS

1. Description

General Dynamics has been working on a commercial Atlas program since

the early 1980s. The current Atlas 1 version uses a two stage liquid propellant core

[Ref. 39:p. 179]. The new Atlas 2 launcher will feature enhanced performance by

incorporating optional strap on-boosters. Availability is planned for 1991. [Ref. 7:p.

370] The large payload fairing is 30.8 feet long and 12 feet wide, with a medium
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size fairing (25 feet x 9.6 feet) available. Both Atlas 1 and 2 launchers are fitted

with the Centaur upper stage motor for GEO payload insertion. The Atlasl and 2

launchers without the Centaur upper stage are known as versions J1 and J2

respectively. Atlas J1 can place 6,100 lbs into a 100 NM polar orbit, while Atlas J2

will be capable of boosting approximately 7,000 pounds into a 100 NM polar orbit,

without the use of strap on boosters. [Ref. 42] Currently, only Atlas E (see Figure

4.2) through H launchers are certified to operate from the WTR using launch sites

3E/W. [Ref. 7:p. 371] The Atlas E can boost approximately 2,400 lbs of payload

to a 100 NM polar orbit. As of April 1990 only seven boosters remain in the

inventory for future missions. Modification of existing WTR Atlas launch facilities

could be accomplished to provide enhanced polar orbit insertion capability. [Ref.421

2. Servicing Mission

The Atlas E through H launcher is used to launch the NOAA and DMSP

series polar weather satellites. Additionally the Atlas ELV can be used in

conjunction with OMV logistic support.

3. Cost

Launch cost for the Atlas 1 is $40 million. Launch price includes $500

million third party liability insurance. [Ref. 39:p. 180] Since the Centaur upper

stage is not required for polar servicing missions, launch cost for Atlas J 1 would be

reduced to approximately $20 million [Ref.42].
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tRef. 3 9 :p. 177]

C. DELTA

1. Description

The McDonnell-Douglas Astronautics Company Delta launch vehicle has

been a NASA space workhorse for 27 years. Over the past 9 1/2 years, reliability

has reached nearly 98%. The current Delta 11 ELV uses a hybrid first stage, liquid

second stage and solid upper stage. Additional strap-on solid motors are available

(see Figure 4.3) for heavier payload launches. Payload fairing is 27.8 feet long and

8.3 feet wide. The use of 10 feet diameter fairings is under investigation for future
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missions. The Delta 11 (Model 6920) is capable of boosting a 6,670 pound payload

into a 100) NM circular polar orbit. The new version model 7920 will have the

capability of placing up to 8,420 pounds of payload into the same orbit. (see Figure

4.4) [Ref. 10:p. 2531 Delta 11 launch facilities from the Eastern and Western Test

Ranges are currently available.
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2. Servicing Mission

The Delta 11 is used to place the Landsat series spacecraft into polar orbit.

Additionally, the Delta II can be used to support OMV refueling/logistics and SBSP

module insertion.

3. Cost

Delta 1i space launches range in price from $35 to $50 million. IRef. 39:p.

181] For the purposes of this study, a $40 million figure will be used.
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D. SCOUT

1. Description

Designed and developed in the late 1950s by NASA, and LTV Missiles

and Electronics Group, Scout's first launch was in July 1960. [Ref. 39:p. 217] Over

the past 20 years, the reliability rate has exceeded 98%. The Scout G-1 uses a

4-stage solid propellant motor. The fairing can support a payload which is 4.9 feet

long and 3.2 feet wide. (see Figure 4.5.) [Ref. 39:p. 340] The G-1 model can place

a payload of 485 pounds into a 100 NM circular polar orbit (see Figure 4.6). Launch

facilities are located at the Wallops Flight Facility (WFF), Virginia, Vandenberg

AFB, California and NgWana Bay (San Marco Facility), Kenya, Africa.

As of June 1988, only seven Scouts remained in the inventory to satisfy

requirements through the 1990s. Although Scout production has terminated, the

possibility of line re-opening has emerged. This will be contingent on the

requirements of NASA's small Explorer program studies and a private venture LTV

Corporation and an Italian business group in anticipation of a growing microgravity

payload market in the 1990s. [Ref. 7:p. 372]

2. Servicing Mission

The Scout G-1 is used to boost small payloads such as ORUs, cryogenic

fluids or other special equipment as required by the user satellite.
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3. Cost

Launch cost for the Scout G-1 is $15 million. [Ref. 40:p. 238]

E. PEGASUS

1. Description

The Pegasus vehicle was privately developed and equally funded by the

Orbital Science Corporation (OSC) and the Hercules Aerospace Company. The

commercial venture is aimed at attracting customers with small payload insertion

requirements in LEO. The booster is designed for horizontal launch utilizing a

conventional wing to provide lift (see Figure 4.7). [Ref. 31:pp. 27-301

The Pegasus is 49.2 feet long, has a 22 -foot wing span and is 50 inches in

diameter. Designed to be carried under the right wing root of a B-52 aircraft, the

Pegasus is launched from an initial altitude of 40,000 feet. The booster then uses

a thre-e stage solid-propellant motor to achieve orbit. The payload section is 6.3 feet

long md 3.8 feet wide. Although presently restricted to military aircraft launch,

com iercial aircraft adaptors are expected in the future. [Ref. 31:p. 4]

The Pegasus is capable of placing an 850 pound payload into a 100 NM

circul'hr polar orbit (see Figure 4.8). The first successful Pegasus flight was

completed in April 1990.
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2. Servicing Mission

The Pegasus is used to boost ORUs, small mass consumables and other

special payloads which may be required.

3. Cost

Launch cost for the Pegasus is approximately $10 million. [Ref. 44:p. 511

F. SUMMARY

Table 4.1 summarizes selected ELV characteristics.
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TABLE 4.1

ELV CHARACTERISTICS

VEHICLE PAYLOAD SERVICING INVENTORY COST (in
TO POLAR MISSION STATUS (as FY-90 $)

ORBIT of Apir. 90)
(100 NM) __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

TITAN IV 32,160 lbs OMV launch Operational 105.0 M

____ ____ __ ____ ____ ___ /resupply _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TITAN 11 3,000 lbs OMV 55 24.6 M
____ ____ ____ resupply _____ ____ _______

ATLAS JI 6,1001 lbs OMV IOC* (1991) 20.0 M
_____ _____ ___ _____ ____ resupply _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DELTALI 6,670 lbs OMV Operational 40.0 M
____ ____ ____ resupply _____ ____ _______

SCOUT GI1 485 lbs ORU launch 7 15.0 M

PEGASUS 850 lbs ORU launch IOC* (1990) 10.0 M

IObC- Initial Operating Capability
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V. POLAR ORBITING SATELLITES

This chapter briefly describes current U.S. polar orbiting satellites. Satellite

system mass breakdown, launch vehicle and cost information is also provided.

The DMSP, NOAA television infra-red observation satellite (TIROS) series and

Landsat spacecraft are launched with an inclination such that the final orbit is

sun-synchronous. This means that the orbital plane of the satellite precesses 360

degrees in 365 days (about I degree per day). This precession is mainly due to the

non-spherical nature of the earth. Precession of the orbital plane at this rate keeps

the orbital plane orientation the same with respect to the Sun, with two equatorial

crossings occurring at the same local time each day per orbit. Thus, a satellite may

be termed to be in a morning, noon, or afternoon orbit depending on this

orientation. [Ref. 45:p. 1-1] In general, most polar orbit inclinations are between

95 to 100 degrees, depending on the operating altitude (see Figure 5.1). The

combination of precession of the orbital plane and rotation of the earth produces an

apparent westward motion of the satellite ground track. Exact repeat cycles occur

at approximately 15 to 17 day intervals depending on satellite altitude and

inclination.
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Figure 5.1 Typical Polar Orbit
[Ref. 46:p. 6-2]

A. DMSP

1. Mission Description

The mission of the DMSP is to provide global meteorological data to the

Service Commanders in support of worldwide military operations, both strategic and

tactical [Ref. 4 5:p. 571. The program is managed by the USAF's Systems Command,

space Division in Los Angeles AF Station, CA. The space segment consists of two

satellites in 450 NM sun-synchronous polar orbits (inclination 98.77 degrees) with an
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orbital period of 101.4 minutes. This equates to 14.2 orbits per day. One satellite

is placed in a morning orbit (0730 local time descending node) and one in a noon

orbit (1200 local time ascending node). [Ref. 45:p. 1A-1]

Real-time weather data is transmitted directly from the spacecraft to Air

Force and Navy ground terminals, and Navy aircraft carriers located throughout the

world. Meteorological data is also transmitted to selected ground sites. A store and

playback mode is also available to provide satellite information on areas which do

not have ground receive sites for direct downlink. [Ref. 7:p. 269]

The current block 5D-2 satellites have a three year operational life and

orbital life of approximately 80 years (see Figure 5.2). Each satellite is equipped

with a visible/infrared scanner, microwave imaging sensor, microwave temperature

sounder, electron spectrometer and electrostatic ionosonde sensor. [Ref. 7:p. 271]

The sensors measure ocean surface wind speed, ice coverage and age,

precipitation, cloud altitude and water content, storm movement and surface

moisture. Additionally, upper atmosphere electron and proton levels are monitored

to aid radar and long-range radio operators.

The block 5D-2 satellite was constructed using some modular components

to facilitate on-orbit repair [Ref.7:p. 271]. Approximately 5 block 5D-2 vehicles

remain in the inventory at this time. An improved block 6 satellite is expected to

be launched in 1998 [Ref.7:p 299]. The spacecraft is built by the General Electric

Astro-Space Company, assisted by three subcontractors.
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Figure 5.2 DMSP Block 5D-2 Satellite
[Ref. 47:p. 57]

2. System Mass Breakdown

The DMSP Block 5D-2 launch weight is approximately 3.20) lbs. The

spacecraft has a beginning of life (BOL) on-orbit mass of approximately 1,820 lbs

and uses hydrazine propellant for reaction control and propulsion [Ref. 7:p. 271].

The on-orbit satellite mass summary breakdown by individual subsystems is shown

in Table 5.1 [Ref. 47:pp. 55-57].

3. Launch Vehicle

DMSP Satellites are launched using the ATLAS E-H launchers from the

WTR at Vandenberg AFB, CA (Ref. 42].
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4. Mission Cost

The cost of each DMSP satellite is approximately $65 million [Ref. 10:p.

17]. Under the assumption that an unshared ATLAS launch is required, the total

mission cost oer satellite is estimated to be $85 million.

TABLE 5.1

DMSP MASS SUMMARY BREAKDOWN

SUBSYSTEM WEIGHT (LBS)

Structure 558.3

Thermal 50.5

Propulsion 37.9

Electrical 465.6

Command & 98.3
Control/Communication

Attitude Control 127.7

Payload 374.9

Apogee Motorcase 106.1

Satellite BOL Mass 1,819.1 lbs
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B. NOAA

1. Mission Description

The mission of the NOAA satellite program (current series TIROS-N) is

to provide global meteorological and environmental data required to support both

the operational and experimental portions of the World Weather Watch Program.

[Ref. 48:p. 13] NOAA operates two command/acquisition ground stations at

Wallops Island, VA and Fairbanks, Alaska in support of satellite operations. An

additional ground station at Suitland, MD is used to record incoming satellite data

for central processing and dissemination. [Ref. 49:p. 441 The space segment consists

of two sun-synchronous satellites at an altitude of approximately 450 NM (see Figure

5.3). Orbit .,clination is 98.9 degrees. The orbital period is approximately 102

minutes, resulting in 14.2 revolutions per day. One satellite is injected to provide

a morning pass (0730 local time on the descending node), while the second provides

an afternoon pass (1430 local time on the ascending node) [Ref. 49:p. 4].

They are the principal source of data for 80% of the globe that is not

covered by conventional data collection means. Over 120 foreign nations, and 1,000

schools, private institutions and others receive NOAA satellite imagery. The current

NOAA-10 and II spacecraft have a 2 year operational life and a 350 year orbital

life. [Ref. 7:p. 534] Each satellite is outfitted with a high resolution radiometer,

operational vertical sounder, space environment monitor, data collection and

plattorm location system, and a search/rescue transponder. The satellites measure
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Figure 5.3 NOAA 'I'iros-N Series Spacecraft
[Ref. 4 8 :p. 13]

temperature and humidity in the earth's atmosphere, surface temperature. cloud

cover, water-ice boundaries, and proton/electron flux densities near the earth. [Ref.

47:p. 6] The spacecraft is manufactured by the General Electric Astro-Space

division, based primarily upon the DMSP satellite design [Ref. 7:p. 533].

2. System Mass Breakdown

The NOAA I I satellite launch weight is approximately 3,725 lbs. The

spacecraft has a BOI1 mass of approximately 2,240 lbs and uses hydrazine propellant

for station keeping maneuvers. The on-orbit satellite mass summary breakdown by

individual subsystems is shown in Table 5.2. [Ref. 47:p. 1391
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TABLE 5.2

NOAA TIROS-N MASS SUMMARY BREAKDOWN

SUBSYSTEM WEIGHT (lbs)

Structure 405.3

Thermal 63.8

Propulsion 216.4

Electrical 522.5

Command & 322.3
Control/Communication

Attitude Control 125.9

Payload 474.9

Apogee Motor Case 106.1

Satellite BOL Mass 2,237.2

3. Launch Vehicle

NOAA satellites are boosted using the Atlas E/F launchers from

Vandenberg AFB, CA [Ref. 7:p. 535].

4. Mission Cost

The estimated cost of a current NOAA satellite is approximately $44

million [Ref.7:p. 5351. The total mission cost per satellite is $64 million, assuming

a single satellite launch.
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C. LANDSAT

1. Mission Description

The Landsat program is designed to provide near global land

remote-sensing imagery. The imagery has greatly enhanced the ability to monitor

and understand the dynamics, character and structure of the earth's land surface

[Ref. 49:p. 156]. The EOSAT commercial entity assumed program control from

NOAA in 1984. The transfer of the program to EOSAT was the beginning of a

10-year effort to commercialize Landsat products. The space segment currently

consists of two spacecraft, Landsats 4 and 5 (see Figure 5.4). Both satellites are

located in circular sun-synchronous polar orbits at an altitude of approximately 380

NM. Inclination is 98.2 degrees. Landsat 5 equatorial crossing occurs at 0945 local

time, with a 16-day repeat cycle and a 1490 NM ground track separation at the

equator. Landsat 5 became the primary spacecraft after multiple malfunctions

affected Landsat 4's performance in October 1987. Landsat 4 was maneuvered to

a higher altitude in an effort to continue operations until Landsat 6 becomes

operational in 1991. Landsat spacecraft have been designed for a three-year

operational life. [Ref. 7:p. 528] The main body of the spacecraft is comprised of

NASA's standard Multimission Modular Spacecraft (MMS) and the Landsat

instrument module. The system integrates the attitude control, power,

communications and data handling, and propulsion subsystems in a standard

configuration. It was developed by the Goddard Space Flight Center to support
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[Ref. 4 7:p. 1611

many spacecraft missions, providing lower costs through economies of commonality

and quantity purchases.

The satellites use a Thermatic Mapper (TM) and a Multi-Spectral Scanner

(MSS) as primary sensors. Real time TM data is available via access on the TDRSS

network. Over 14 foreign nations have installed ground receiving stations for

Landsat data. The high quality imagery obtained from the Landsat spacecraft has

had a major impact on management of the world's three major resources; food,

energy and environment. [Ref. 7:p. 5311 Current funding difficulties may result in

a coverage gap in the late 1990's, when the Landsats 4 and 5 are expected to cease

operating. The improved Landsats 6 and 7 will feature a five-year design life and
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improved sensors. Additionally, the vehicles will again use data recorders which had

been previously eliminated. The spacecraft are built by the General Electric

Astro-Space Division.

2. System Mass Breakdown

The Landsat 5 launch weight is approximately 4,449 lbs. The spacecraft

has a BOL mass of approximately 4,284 lbs and uses hydrazine for on-orbit station

keeping. The spacecraft component mass summary breakdown is shown in Table 5.3

[Ref. 47:pp. 64-65].

TABLE 5.3

LANDSAT MASS SUMMARY BREAKDOWN

SUBSYSTEM WEIGHT (lbs)

Structure 330

Thermal 13

Propulsion 738

Electrical 591

Command & 299
Control/Communication

Attitude Control 453

Payload (Includes 1,860
Instrument Module)

Spacecraft BOL Weight 4,284
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3. Launch Vehicle

Landsat spacecraft are launched using the Delta 11 (MOD 3920) ELVs

from the WTR [Ref. 47:p. 63]. Landsats 6 and 7 will use the Titan II ELV for

orbital insertion commencing in 1991 [Ref. 7:p. 530].

4. Mission Cost

The cost for Landsat 4 was $60 million in 1984 [Ref. 50:p. 161. The

estimated cost due to inflationary increases is approximately $70 million in 1990

dollars. Using an unshared Delta I launch, total mission cost would be

approximately $110 million.

D. SUMMARY

Table 5.4 summarizes polar satellite characteristics.

TABLE 5.4

POLAR SATELLITE CHACTERISTICS

SAELLITE IULWIOI MTIT=D (IN) LAUNCI I or TOTAL OST
voicLE SaELLITES PaR SATULIT

01-1MIT lauIl
(in FY-90 $)

DSHP 98.77' 450 Atlas E-H 2 $85 II

NOAA 98.90" 450 Atlas E/F 2 $64 X

LAIDSAT 98.20' 380 Delta II 2 $110 K
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VI. SATELLITE SERVICING WITH THE OMV

A. ORBITAL INSERTION

The OMV was designed for orbital insertion using the space shuttle. Range

safety restricts ETR launches to less than 57 degree inclinations for direct insertion

[Ref. 1: Sec. 3.1]. Since STS operations from the WTR have been deferred

indefinitely, an ELV is required to boost the OMV into polar orbit.

The best suited available ELV to satisfy this mission is the Titan IV. The Titan

IV has ETR and WTR launch capability and a payload dynamic envelope of 15 ft

which is the same as the STS. The Titan IV with no upper stage has a payload

capacity of 32,160 lbs to a 100 NM circular polar orbit. The total OMV servicer

weight is 30,976 lbs, leaving over 1,000 lbs of excess payload capacity. Electrical and

mechanical interface requirements between the OMV and Titan IV were found to

be feasible following a detailed investigation conducted in 1988. [Ref. 1: Sec. 3.1]

1. Electrical

The NASA OMV has an electrical umbilical connector to maintain

electrical power while in the STS cargo bay. The same interface can be retained by

using the STS side of the umbilical for the OMV subsystems which must be

energized during the launch phase, such as the IMU and certain ground control

77



circuits, showed that the OMV batteries can supply the necessary power. Based on

these requirements, no electrical connection between the OMV and Titan IV are

necessary. Consequently, no OMV electrical hardware interface changes are

required. [Ref. 1: Sec. 3.1]

2. Mechanical

An adaptor is required to mechanically attach the OMV to the Titan IV.

Using a square adaptor design, the OMV is supported at four evenly spaced points

to provide direct and relatively short paths between the load and reaction points.

Removal of the OMV trunnion and keel pins (required for space shuttle operations)

is necessary to establish the proper payload fairing clearance. The pins exceed the

payload allowable dynamic envelope by 7.75 and 8.5 inches respectively. The pins

could be reinstalled by on-orbit EVA permitting STS retrieval, should manned polar

operations become possible at a future date. The OMV is integrated to the Titan

IV payload fairing with the PM face down. This permits the solar array panels to

be stowed as shown in Figure 6.1. [Ref. 1: Sec.3.21 The arrangement allows the

OMV servicing kit to be placed on the SRV payload side with no restrictions, well

within payload fairing length restrictions.

3. Thermal

The temperature inside the payload launch fairing (PLF) is controlled by

air conditioning on the launch pad and therefore does not present a problem for any

OMV hardware. The OMV experiences free molecular heating after the PLF is
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[Ref. l:Sec. 3.31

jettisoned. Since this heating rate is below that of the on-orbit environment, there

is no impact to the OMV design. [Ref. 1: Sec. 3.1]

4. Structural

The structural limit loads of the Titan IV have a 1.25 factor applied to the

design values, while the man-rated STS requires a more stringent 1.4 factor. All of

the Titan IV launch environments (i.e., acoustic, acceleration loads, vibrations and

shock) are either similar to or less severe than the STS launch environments.
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After orbital injection, solar panel extension occurs, followed by OMV

ascent to its operational altitude (300 to 500 NM).

B. PAYLOAD STABILITY

A stable payload or user satellite is required for successful docking to the OMV

servicer. Current specifications permit the OMV to dock with an object rolling at

2.8 degrees per second relative to the docking axis or .5 degrees per second for a

tumbling target. [Ref. 42: p. 71

C. OMV DOCKING OPERATIONS

OMV docking to an ORU payload or user spacecraft will be operated by

remote control from the ground, or possibly the space station, by a pilot using

television monitors and on-board radar. The ground or space based pilot commands

the vehicle through the TDRSS link.

1. Rendezvous

The problem of principle concern in polar orbiting satellite servicing and

resupply is to establish cost-effective rendezvous and docking procedures for

servicing a constellation of satellites [Ref. 51: p. 11. The orbital insertion point of

ELV resupply modules and/or ORUs should be as close to the OMV servicer

position as possible, to minimize the fuel requirement for retrieval. The OMV

maneuvers to establish an orbit to dock with a user satellite. The ORU or resupply

module launch is coordinated so that recovery can occur while the OMV is enroute

80



to a user satellite, minimizing total fuel required for the operation. OMV plane

change magnitudes for rendezvous with the polar orbiting spacecraft under

consideration are on the order of 1 to 2 tenths of a degree. This greatly reduces the

propellant required to conduct servicing operations.

The OMV uses an inertial navigation system and one of two GPS

receivers to determine orbit change parameters, based on an earth-centered

coordinate frame. The GPS receiver enables OMV position knowledge within 470

ft and velocity within 1.4 ft per second. Auto-rendezvous to a point near a target

spacecraft or payload can be accomplished from a separation distance of up to 4.5

NM by means of the rendezvous radar. [Ref. 5: p. 211 The OMV acquisition radar

maximum range is 4.5 NM with a ± 20 degree field of view [Ref. 31: p. 43]. Range

data is provided from 4.5 NM to 100 ft. Once the target has been acquired by the

radar tracking system, the OMV begins a pre-programmed docking approach. In this

phase, the OMV performs all orbit change and trim maneuvers required to bring the

vehicle to within approximately 1,000 ft of the target. Manual pilot control via the

GCC takes place at this point for the final approach and docking. (see Figure 6.2.)

The OMV is programmed to execute a collision-avoidance maneuver in

the event of two critical component failures, in either the automatic or manual

operating modes. If the failure is sufficient to disable the OMV while in the

automatic operation mode, the vehicle automatically transitions to its space-basing
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Figure 6.2 OMV Proximity Operations and D~ocking
[Ref. 34:P. 191

mode. In the manual operating mode, the UMV executes a reverse thrust maneuver

to back away from the target satellite or payload. These safety features ensure

OMV and target satellite/payload safety. (Ref. 5: p. 121 A representation of the

OMV servicer control process is shown in Figure 6.3.
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D. DOCKING MECHANISMS

The OMV can be fitted with either the NASA standard remote grapple or

three point docking mechanisms. This study assumes that a RGDM configuration

is used. The mechanism is centrally located on the face of the OMV servicer kit,

and contains all electrical and fluid connections for on-orbit servicing requirements.

(see Figure 6.4.)
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The fluid coupler design includes six couplings (two bipropellant, one

hydrazine, one gaseous nitrogen and two gaseous helium) mounted on a ring carrier

surrounding the RDGNI. Electrical system connections are also provided. Initial

alignment and mating occurs during docking, and final coupling engagement with the

user spacecraft is accomplished by driving the carrier ring to its final mated position

with three drive motors. The design provides latches to lock the system in the mated

position as an added point of restraint to the 1,200 lb RDGM restraining force.

User satellites would require at least one integrated RGDM fluid/electrical

connection point for on-orbit servicing. Additional grapple fixtures may be needed

84



to provide the OMV servicer access to locations which cannot be reached from the

primary attachment point (see Figure 6.5).

To provide the pilot with a visual aid necessary for docking and attachment,

a grapple target is painted on the user satellite or payload. The pilot maintains

specific orientation with respect to the target while closing the distance to the target

satellite for final docking.

Grapple Target

Grapple Shaft

Arm
Electrical Connec a t

~-' Baseplate

Figure 6.5 Satellite Grapple Fixture
[Ref. 23:p. 61

E. SERVICER MANIPULATION TASKS

The manipulation tasks required to be performed by the FTS do not require

a high degree of dexterity, however, a simple ORU removal/replacement procedure

is necessary. Using the ORU change-out method incorporated into the OMV as a
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representative example, a single universal servicing tool (UST) is needed. For ORU

removal, the tool loosens a single attachment bolt and subsequently removes the unit

after locking on an H-shaped bracket at the access opening. The tool blade is

inserted into the access hole extending through the ORU body to turn a lead screw

that fastens or unfastens the module to the structure below (see Figure 6.6). To

install an ORU, the process is reversed.

The H-shaped interface plate at the top of the module is held by the two UST

prongs in the process of attaching or detaching it to or from the spacecraft structure.

[Ref. 33: p. 371 Robot manipulator tasks necessary to gain access to ORUs, such as

the removal/relocation of thermal covers is assumed to be within the capability of

the robot. [Ref. 33: p. 991

Replacement of fluid tanks would require a complex sequence of instructions

for the handling of attachment bolts and fluid line connectors. This type of FTS

operation is considered impractical for most servicing missions, unless the supply

tank is an integral part of an ORU which is designed for one-step modular removal

or replacement.
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[Ref. 33:p. 381

F. USER SPACECRAFT INTERFACE REQUIREMENTS

1. Mechanical

User spacecraft interface provisions and operational status during servicing

are important considerations in the development of a remote servicing capability.

In general, the spacecraft must be "robot-friendly", be safe to service, and be of

rugged design. Spacecraft must also be constructed using modular techniques, and

use standardized exchange procedures for replaceable ORUs. The modules must be

easily accessible and have simple attachment/removal interfaces. U ser satellites

would also require a grapple-type attachment point and a television target plate for

manual OMV docking from which all ORU locations are accessible from the FTS.
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The grapple fixture can be modified to add automatic oi-directional fluid couplings

and electrical connectors. [Ref.33: p.341

2. Electrical

User satellites would require the capability to maintain their own power

during servicing and provide compatible fluid control and status monitoring via the

electrical interface. Post-servicing equipment checkout should feature built-in test

equipment and computer aided calibration to return the satellite back to operational

status.

3. Operational

User satellite orientation is also assumed to be unconstrained during

servicing. Spacecraft non-availability time would depend on the complexity of

servicing required. It has been estimated that the servicing portion of the mission

will require about 20 hours to complete. The figure includes a total of 15 hours for

projected servicing activity (i.e., ORU changeout) and 5 hours of unproductive time

to include a margin against unforeseen delays. The OMV provides attitude control

to the user satellite for the duration of the servicing mission. [Ref.30: p.28]
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VII. COMPARISON OF ESTIMATED OMV POLAR SATELLITE
SERVICING COSTS WITH CURRENT SATELLITE

REPLACEMENT COSTS

For the purposes of this study, only spacecraft construction and launch costs are

considered in the analysis. The total cost of an OMV servicing mission would,

therefore, require an additional premium to include ground services required to

support the mission. ORUs, fuel and other logistic requirements that represent some

fraction of the total satellite cost would also have to be factored in to the total

servicing cost calculation. The space infrastructure required for OMV ground

control (i.e., TDRSS) currently exists, and does not require modification to support

the OMV servicer mission. Lastly, a space-based support platform is not considered

to be available for OMV servicer use. All estimates are in FY 90 dollars.

A. OMV SERVICER

The first NASA OMV is currently in the final stages of development, with an

initial launch date scheduled in 1994. The total estimated research, development and

construction cost for the first OMV is $100 million. A second vehicle has also been

specified for procurement by NASA at a follow-on cost of $65-$70 million. To

incorporate the changes required for vehicle conversion from a battery to a solar

powered configuration and extended duration service life (10 years or more) as

stated in Chapter Ill, the follow-on OMV cost would rise to approximately $100
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million. The cost to modify the OMV for the servicing role (i.e., bidirectional fluid

transfer interfaces/couplings) and construction of the storage rack portion of the

servicing front end kit is currently estimated to be $70 million. An additional $30

million (projected) would be required for modification and qualification of a space

station configured FTS unit for OMV use. [Ref.41

The launch cost for the OMV servicer, using the Titan IV ELV, currently is

estimated at $105.5 million. The total cost for the OMV servicer and launch to a

100 NM polar orbit is estimated as follows:

Extended Duration, Solar Powered OMV $ 100.0 Mil.

Servicing Front End Kit (Storage Rack and FTS) $ 100.0 Mil.

Launch to 100 NM Polar Orbit Using Titan IV $105.5 Mil.

OMV Servicer Estimated Total Cost $ 305.5 Mil.

B. DMSP PROGRAM

Using the three year design life of the DMSP block 5D-2 satellites, the

spacecraft and launch costs to maintain two satellites continuously on-orbit over a

ten year period is approximately $480 ($80 per spacecraft launch times 2 spacecraft

times 3 launches per 10 year period) million. The estimate assumes indiidual

spacecraft launches using the Atlas E-H launch vehicle.
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C. NOAA PROGRAM

The current NOAA satellites use a two year design life and are deployed to

maintain two spacecraft continuously on-orbit. Over a ten year period, an estimated

10 spacecraft (2 satellites times 5 launches per 10 years) will be needed to maintain

the constellation at a cost of approximately $640 (10 times $64 per mission) million.

The figure assumes individual spacecraft launches using the Atlas E/F series

expendable launch vehicle.

D. LANDSAT PROGRAM

Using the five year design life of Landsats 6/7, the estimated cost to construct

and launch the four spacecraft which would be required to maintain a two satellite

constellation continuously on-orbit is $440 (4 times $110) million. The estimate

assumes individual satellite launches using the Delta II launch vehicle.

A summary of the 10 year mission estimates are shown in Table 7.1.

E. OMV SATELLITE SERVICING

Assuming a worst case situation where the OMV servicer is required to

descend from its base orbit (at 400 NM) to refuel with a resupply ELV (at 100 NM)

and then proceed to rendezvous with a user satellite at a 450 NM altitude,

approximately 6,000 lbs of bipropellant is required to perform a single servicing

mission. [Ref. 4] This estimate is based on an OMV equipped with a 10,000 lb

servicing kit (containing FFS, storage rack, spare ORUs and satellite fuel). Using
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TABLE 7.1

POLAR SATELLITE AVERAGE MISSION COST
SUMMARY (10 YEAR PERIOD)

PROGRAM TOTAL COST COST PER YEAR

DMSP $ 480 M1L. $ 48 MIL.

NOAA $ 640 MIL. $ 64 MIL.

LANDSAT $ 440 MIL. $ 44 MIL.

TOTAL $1,560 MILL. $156 MIL.

an Atlas J 1 or Delta II ELV to boost the bipropellant to the OMV, an additional 100

- 500 lb of payload capacity (depending on ELV used) will be available for

concurrent ORU or other supply delivery. Referring to Figure 3.3 in Chapter 111,

the OMV with a 10,500 lb payload is capable of altitude changes of approximately

750 NM, under conditions where small plane changes are performed (less than .5

degree). An OMV servicer based at 400 NM would first descend to 100 NM to

retrieve the resupply module, then ascend to 450 NM to perform a servicing mission,

and then return to a base orbit altitude of 400 NM for a total of 700 NM of transit

distance. Since all of the polar satellite orbital planes under consideration are within

.1 degree of each other (with a maximum altitude of 450 NM) the OMV servicer

performance under these parameters will satisfy the mission requirement. [Ref. 41
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Deployment of a SBSP would greatly reduce the OMV fuel requirement to

perform a servicing mission by providing a stable platform to store bipropellant for

the vehicle and by eliminating the need for time consuming, costly and frequent

transits to retrieve fuel at low altitude for each individual mission. OMV propellant

could be stockpiled by using the large payload capacity of the Titan IV ELV to

provide bulk transport. The ability to detach and temporarily store the servicer front

end kit using a space platform would allow low cost OMV inspection missions to be

performed. Additionally, the platform could provide a protected storage center for

spare ORUs and other logistic needs. A SBSP would permit a wide range of

resupply launch vehicles to be used, with payloads delivered into orbits which would

optimize OMV propellant consumption for a given mission, while minimizing launch

vehicle cost. The deployment of a SBSP for satellite servicing would greatly expand

the feasible options (i.e., servicing satellites at higher altitudes and/or higher

inclinations) available to a servicer-configured OMV.

For the purposes of the study, a $35 million Atlas or Delta series ELV is

assumed to be required for each servicing mission to be performed. The yearly cost

of the OMV servicer over the 10 year period is $30.55 million. Subsequently, the

hardware cost for a single OMV mission on a yearly basis is $60.55 ($35 + $30.55)

million. For the case where two OMV servicer missions per year are performed, the

average cost per mission decreases to $50.3 ($35 + $30.55/2) million. Table 7.2

shows the average OMV servicer hardware cost per mission for several cases where
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an individual ELV (at $35 mil. per launch) is assumed to be required for each

mission.

TABLE 7.2

OMV SERVICER COST PER YEAR (10 YEAR PERIOD)

NUMBER OF MISSIONS OMV SERVICER AVERAGE

PER YEAR COST PER MISSION (in milliot,.,)

1 $ 60.55

2 $ 50.30

3 $ 45.20

4 $ 42.60

5 $41.10

F. COMPARISON RESULTS

The cost figures, under the assumption that the OMV servicer requires an Atlas

J 1 or Delta II resupply prior to each servicing mission, compare favorably with those

of satellite replacement. Satellite servicing refers to the replacement of essential

on-board satellite consumables and propellant, while repair refers to defective

ORU/solar array chlange-out.
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Using the case where a single OMV servicer mission (per year over a ten year

period) is performed, repair of a non-mission capable NOAA TIROS-N satellite

(total cost $64 mil.) yields a savings of approximately $3.5 million when compared

to satellite replacement cost (i.e., construction and launch of a new satellite). Repair

of a single non-mission capable Landsat spacecraft (total cost $110 mil.) results in

savings of $49.5 million over satellite replacement cost. The projected savings

margin would have to be adjusted by the added cost of OMV bipropellant, satellite

fuel, ORUs and ground support costs. The small cost savings ($3.5 mil.) in the case

of the NOAA spacecraft does not provide a large margin to absorb the added costs

associated with an OMV servicing mission. However, in the case of the Landsat and

DMSP satellites, a significantly greater margin ($49.5 mil. and $19.45 mil.

respectively) is available to cover these other mission costs.

As the number of missions per year increases, a marked drop in the average

cost per OMV servicing mission is observed. Table 7.3 shows the cost savings

margin for the case where three OMV servicing missions per year (maintained

through a 10 year period) is assumed.

The deployment of a long term SBSP (20 years or more), while increasing

program costs initially, could result in significant long term net cost savings per

mission by expanding the range of feasible mission options, and thereby generating

a larger customer base. The cost of the SBSP could then be amortized over the 20

year period minimizing the cost increase per servicing mission. Potential customers
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TABLE 7.3

OMV SERVICING MISSION COST VERSUS SATELLITE
REPLACEMENT

COST COMPARISON (3 SERVICING MISSIONS PER YEAR)

PROGRAM REPLACEMENT AVERAGE SAVINGS

COST SERVICING MARGIN

COST

DMSP $80 MIL. $ 45.2 MIL. $ 34.8 MIL.

NOAA $ 64 MIL. $ 45.2 MIL. $ 18.8 MIL.

LANDSAT $110 MEL $ 45.2 MIL. $ 64.8 MIL.

would then have the flexibility to utilize small, low cost boosters such as Pegasus or

Scout to deliver servicing payloads. By increasing the number of servicing missions

per year, the average costs of the OMV servicer, bipropellant, SBSP, and ground

support would be reduced by spreading the cost over a greater number of users.

Additionally, the use of a SBSP would provide the capability to economically

service/repair larger and more expensive satellites which would not be possible if

the OMV servicer is required to transit to low altitude for refueling prior to each
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mission or where multiple ELV resupply missions at higher altitudes would be

needed.
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VIII. CONCLUSION

Satellite servicing is a technologically evolving activity which has not yet

attained the final stages of development. The on-orbit servicing operations thus far

have depended entirely upon manned flights, severely limiting the number of

potentially serviceable spacecraft to those in orbits accessible by the space shuttle.

Remote servicing operations using robots will soon be developed to support

construction of the long-term space station Freedom. International developments are

also proceeding at a rapid pace, with the Federal Republic of Germany, Canada, and

Japan playing key roles in the remote servicing technology area. Dependence on

manned operations has allowed great flexibility in the servicing tasks attempted

owing to the dexterity and ingenuity of humans, however, it has restricted the

number of programs which can use this capability to those within the orbital

performance envelope of the space shuttle. Additionally, the manned servicing

operations require the use of expensive man-rated systems and extensive safety

precautions to perform servicing tasks.

Spacecraft on-orbit servicing must consider such factors as: systems

architecture; level of modularity of spacecraft and payload; degree of reliability;

frequency of servicing needed during the lifetime of the spacecraft; level of

commonality of systems or systems internal and external to the satellite. Inherent
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design decisions which are required to make satellite remote on-orbit servicing

compatible with the OMV servicer will be more costly. NASA directed studies have

shown that an estimated 8 percent per unit cost increase can be expected, with the

spacecraft weight increasing between 5 to 10 percent resulting from modular design

construction. [Ref. 22: p. 35]

Additionally, implementation of this concept depends on the achievement of

a standardized spacecraft configuration to allow for removal and replacement of all

ORUs and resupply of consumables, using telerobotic subsystems.

Historical evidence has shown that many LEO spacecraft performing important

missions such as weather data collection, radar imaging and other scientific research

have experienced serious mission degradation and in some cases total mission loss

due to the failure of an on-board subsystem component prior to the designed

satellite lifetime. These failures have often resulted in the loss of vital data and

revenue to the user, in addition to the cost of spacecraft replacement. In the past,

for most satellites, maintainability has been associated with the timely application

of telemetry reconfiguration and use of redundant satellite subsystems as necessary

over the life cycle of the spacecraft [Ref. 12: p. 1]. Spacecraft whose mission

performance could be enhanced or expanded by on-orbit maneuvers (i.e., weather

reconnaissance and earth resource satellites) are constrained by the reduced

spacecraft lifetime resulting from such maneuvers.

Advances in the areas of microelectronic processors, robotic systems, and

artificial intelligence have opened the way for the addition of on-orbit satellite
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support services, which are not limited to astronaut EVA repair operations. The

servicer configured orbital maneuvering vehicle has the potential to greatly expand

the scope of servicing operations to orbital inclinations and altitudes far beyond the

reach of the current space shuttle. Modification of the OMV fluid systems

(bipropellant and monopropellant) to enable bidirectional propellant and pressurant

transfer requires only plumbing and valve additions. A simple, direct fluid transfer

system utilizing the existing RGDM equipped with automatic fluid couplings and

engagement devices uses existing hardware. Modifications for OMV conversion to

solar power, long life protection and the addition of the servicer front end kit boost

the cost of the OMV servicer to $305.5 million. The space infrastructure required

to support OMV servicing operations currently exists (i.e., TDRSS). Ground control

of the FTS, operating in a supervised autonomous mode, is compatible with the

OMV S-band communication and data relay rates and the TDRSS link time delay.

Operating in this mode, ORU exchange task instructions are programmed into the

FTS onboard computer and executed automatically with intervention from the

ground control site as a backup/override option.

Two OMV servicing options have been discussed. The first option, which was

the primary case examined in the study, utilizes an OMV equipped with a servicer

front end kit, operating at a base altitude between 300 NM to 400 NM. The OMV

servicer in this case is located in a sun-synchronous orbit (inclination 98 to 99

degrees) and performs servicing/repair missions on the DMSP, NOAA and Landsat

series spacecraft. The study assumes the spacecraft are compatible for OMV

100



scrvicing operations for the purposes comparing spacecraft replacement costs with

OMV servicing estimated costs. In this comparison, OMV servicing costs compared

favorably with satellite replacement costs. Assuming that an individual Delta II or

Atlas J1 (at $35 mil. per launch) was required for each servicing mission, and that

the OMV servicer would be used for a single servicing mission per year (over the

projected 10 year vehicle lifetime), estimated cost savings of $3.5, $19.45 and $49.5

million would result when compared to the single satellite replacement cost (i.e.,

satellite construction and launch expense) for the NOAA, DMSP, and Landsat

spacecraft respectively. These cost saving estimates do not include the added costs

of OMV bipropellant, satellite fuel, ground support or any ORUs that might be

required for a particular mission. Subsequently, the cost saving margin would have

to be reduced by the combined cost resulting from these factors; however, in the

case of the DMSP and Landsat programs still should provide a significant savings

margin over spacecraft replacement. Application of an OMV servicing concept to

future platforms such as the large and expensive Earth Observing System (EOS)

would result in even larger cost savings margins when compared to platform

replacement at the planned five year interval.

In addition, as the satellite user community increases, a concentrated effort to

standardize interfaces, subsystems and ORUs for spacecraft bus systems and

payloads would permit expansion of OMV services to a larger number of satellites

and thus further reduce the cost per servicing mission. The main disadvantages

associated with the OMV servicer in considering this first option is the requirement
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to provide a large amount of OMV bipropellant using a large and relatively

expensive booster prior to each servicing mission. Further, without the capability to

detach the large servicer front end to a stable platform, the OMV cannot be used

economically for other missions such as debris collection and satellite servicing

missions at higher altitudes and/or other orbital inclinations.

A second OMV servicing option involves the deployment of a modular SBSP

to provide a thermally controlled storage facility for OMV servicer needs such as

fuel, replenishment consumables (e.g., cryogenics) and ORUs. The SBSP includes

the required subsystems such as electrical power and distribution, thermal control,

data processing, communication, guidance and attitude control that are present in

other spacecraft. Using this option, the concept takes advantage of large and cost

efficient (on a per pound to orbit basis) boosters such as the Titan IV to provide

bulk quantities of OMV bipropellant, satellite fluid consumables and other servicing

mission needs. Under the assumptions of this scenario, the servicing concept can use

low cost boosters, such as Pegasus and Scout, to launch required ORUs or other

servicing payloads. The launch is coordinated to minimize OMV transit distance and

propellant consumption. The use of a SBSP would significantly expand the OMV

servicer operational envelope, thus providing a greater range of servicing mission

options available. Additionally, the OMV front end servicing kit could be detached

when not actually required, allowing the OMV to pursue other missions such as

debris collection or satellite inspection much more economically. The primary

disadvantage of a SBSP deployment is the additional cost that would be added for
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a given servicing mission. This would be partially offset by the reduced OMV

propellant consumption for a given mission and the fact that a dedicated OMV

servicer bipropellant resupply mission would not be required prior to each servicing

mission. The added cost per mission of a SBSP servicing concept could be initially

reduced through government subsidy, encouraging the development of an on-orbit

OMV servicer capability, with commercial services expansion as a primary goal.

Ultimately, the wide range of servicing and other mission options available would

attract an increasing number of users and reduce the cost per mission.

The potential to extend satellite service life and reduce overall life-cycle cost

are strong reasons to pursue the on-orbit OMV servicer support concept, particularly

in the case where large and expensive spacecraft constellations are located.

Additionally, implementation of the concept permits the incorporation of on-orbit

preplanned product improvement (P3 ) upgrades, preventive maintenance actions,

recalibration, reboost and spacecraft inspection [Ref. 2: p. 1]. The OMV servicer

also provides the flexibility for rapid ground response to on-orbit emergency

situations which could minimize the loss of vital data from spacecraft and permit

resumption of services with minimal program disruption. Unmanned servicing

operations using the servicer configured OMV and expendable launch vehicle

combination offers one effective approach to perform satellite servicing and other

missions beyond the reach of the space shuttle.
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APPENDIX

LIST OF ABBREVIATIONS AND ACRONYMS

AFB Air Force Base
Ag-Zn Silver Zinc
BOL Beginning of Life
DARPA Defense Advanced Research Projects Agency
DMSP Defense Meteorological Satellite Program
DOD Department of Defense
DOF Degrees of Freedom
ELV Expendable Launch Vehicle
EOL End-of-Life
EOS Earth Observing System
ERS European Remote Sensing Satellite
ESA European Space Agency
ETR Eastern Test Range
EVA Extra Vehicular Activity
FT Feet
FTS Flight Telerobotic Servicer
Ga-As Gallium Arsenide
GCC Ground Control Console
GEO Geosynchronous Earth Orbit
GN & C Guidance, Navigation and Control
GPS Global Positioning System
HR Hour
IMU Inertial Measurement Unit
IOC Initial Operating Capability
IRS Indian Remote Sensing Satellite
Kbps Kilobits per second
KSC Kennedy Space Center
KW Kilowatt
LB Pound
LEO Low Earth Orbit
MMS Multi-mission Modular Spacecraft
MOS Marine Observation Satellite
N2  Nitrogen
N2H, Hydrazine
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NASA National Aeronautics and Space Administration
Ni-Cd Nickel Cadmium
Ni-H 2  Nickel Hydrogen
NM Nautical Mile
NOAA National Oceanic and Atmospheric Administration
OMV Orbital Maneuvering Vehicle
ORU Orbital Replacement Unit
OSC Orbital Science Corporation
OTV Orbital Transfer Vehicle
P31 Preplanned Product Improvement
PLF Payload Launch Fairing
PM Propulsion Module
RCS Reaction Control System
RGDM Remote Grapple Docking Mechanism
RMS Remote Manipulator System
SBSP Space Based Support Platform
SRV Short Range Vehicle
STS Space Transportation System
TDRSS Tracking and Data Relay Satellite System
TIROS Television Infra-red Observation Satellite
TM Thermatic Mapper
TPDM Three Point Docking Mechanism
USAF United States Air Force
UST Universal Servicing Tool
W Watts
WTR Western Test Range
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